Libmarpa

Version 9.0.3
23 June 2022

Jeffrey Kegler

This manual (23 June 2022) is for Libmarpa 9.0.3.
Copyright (©) 2022 Jeffrey Kegler.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Published 23 June 2022 by Jeffrey Kegler

Table of Contents

1 Nowarranty 1
2 About this document 2
2.1 How to read this document L. 2
2.2 PrerequiSites 2
2.3 Parsing theory....... ... 2
2.4 Terminology and notation i, 2
2.4.1 Application and diagnostic behavior........................ 3

3 About Libmarpa................................. 4
4 Architecture.............. 5
4.1 Major objectsot e 5
4.2 Time obJects ..ot 5
4.3 Reference counting 6
4.4 Numbered objectso 6

5 Input....... . 7
5.1 Earlemes 7
5.1.1 The traditional input model................. 7

5.1.2 The latest earleme........ ..o 7

5.1.3 The current earleme i 7

5.1.4 The furthest earleme........... o il 8

5.2 The basic models of input i 8
5.2.1 The standard model of input................, 8

5.2.2 Ambiguous input 9

5.3 Terminals ... 9

6 Exhaustion................., 10
7 Semantics............., 12
8 Threads.............., 13
9 Failure......... 14
9.1 Libmarpa’s approach to failure............... 14
9.2 User non-conformity to specified behavior...................... 14
9.3 Classifying failure i i 15
9.4 Memory allocation failure............ i 15

9.5 Undetected failure...... ..ot 15
9.6 Irrecoverable hard failure...................................... 16
9.7 Partially recoverable hard failure............................... 16
9.8 Library-recoverable hard failure............... 16
9.9 Fully recoverable hard failure............. o ... 17
9.10 Soft fallureo 17
9. 11 Error codes ...t 18

10 Introduction to the method descriptions.... 19

10.1 About the overviews.o 19
10.2 Naming conventionsc.ceeeeeeiiiiiiiiiieeeeeeenn.. 19
10.3 Return values....... ..o i 19
10.4 How to read the method descriptions 20
11 Staticmethods................................ 21
12 Configuration methods....................... 22
13 Grammar methods............................ 23
13,1 OVEIVIEW . . oottt 23
13.2 Creating a new grammareeueuennneenneennenn.. 23
13.3 Tracking the reference count of the grammar.................. 24
13.4 Symbol methods 24
13,5 Rulemethods 26
13.6 Sequence methods...............oiiiii 28
13.7 Rank methods........ i 30
13.8 Precomputing the Grammar............., 31
14 Recognizer methods 34
14.1 Recognizer Overviewttt 34
14.2 Creating a New TeCOZNIZETvuuttt et 34
14.3 Keeping the reference count of a recognizer 34
14.4 Life cycle mutators......... ..o 34
14.5 LoCation ACCESSOTSttt e ettt 37
14.6 Other parse status methods L. 39
15 Progressreports..................., 41
16 Bocage methods.............................. 43
16.1 OVeIVIEW . . oottt e 43
16.2 Creating a new bocage ...t 43
16.3 Reference countingcoiiiii i 43

16.4 ACCESSOTS . oo vttt e e e e 43

ii

17 Ordering methods 45
171 OVeIVIEW . .ottt e e 45
17.2 Creating an ordering ...t 45
17.3 Reference countingo 45
17.4 ACCESSOTS ..ottt 45
17.5 Non-default ordering, 46

18 Tree methods.................................. 47
18.1 OVEIVIEW . . oottt 47
18.2 Creating a new tree iterator 47
18.3 Reference countingo 47
18.4 Iterating through the trees o it 47

19 Valuemethods.................. 49
191 OVeIVIEW . .ottt 49
19.2 How to use the valuator i i, 49
19.3 Advantages of step-driven valuation 49
19.4 Maintaining the stack 50

19.4.1 Sizing the stack i 51

19.4.2 Initializing locations in the stack......................... 51
19.5 Creating anew valuator............ ... i, 52
19.6 Reference countingo 52
19.7 Stepping through the valuator................................ 53
19.8 Valuator steps by type ... 53
19.9 DBasic Step aCCesSOrs ..o vt e 54
19.10 Other Step ACCESSOTS. ...ttt 54

20 Events 56
201 OVEIVIEW . ettt ettt e 56
20.2 DBasSiC event aCCeSSOTSttt ettt 56
20.3 Completion events.ot 56
20.4 Symbol nulled events....... ..o, 58
20.5 Prediction events..........cooiiiiiiii i 60
20.6 Symbol expected events i 61
20.7 Event codes.........ooiiiiii 62

21 Error methods, macros and codes........... 64
21.1 Errormethods i 64
21.2 Error MacroS. .. .oouin e e 64
21.3 External error codes.uiiiiiiiiiiiii i 64
21.4 Internal error codes ... 72

22 Technical notes................................ 75
22.1 Data types used by LibmarpaoooiiiiiiL 75
22.2 Why so many time objects? i 75
22.3 Numbered objects 75

224 LHS terminalS.ooo i 76

iii

23 Advanced input models 77
23.1 The dense variable-length token model........................ 7
23.2 The fully general input model 77

24 Futures.......... ... 79
24.1 Orthogonal treatment of exhaustion 79
24.2 Furthest earleme values. 79
24.3 Additional recoverable failures in marpa_r_alternative()....... 79
24.4 Untested methodso 79

24.4.1 Ranking methods......... i 80
24.4.2 Zero-width assertion methods................... 80
24.4.3 Methods for revising parses.............cooiiiiiiiii.. 81

25 Deprecated techniques and methods........ 82

25.1 Valued and unvalued symbols............. L. 82
25.1.1 What unvalued symbols were 82
25.1.2 Grammar methods dealing with unvalued symbols 82
25.1.3 Registering semantics in the valuator 83

Index of terms. 84

iv

1 No warranty

The Libmarpa license takes precedence over the statements in this document. In particular,
the license states that Libmarpa is free software and has no warranty. No statement in this

document should be construed as providing any kind of warranty.

2 About this document

2.1 How to read this document

This is essentially a reference document, but its early chapters lay out concepts essential
to the others. Readers will usually want to read the chapters up and including Chapter 10
[Introduction to the method descriptions], page 19, in order. Otherwise, they should follow
their interests.

2.2 Prerequisites

This document is very far from self-contained. It assumes the following:

e The reader knows the C programming language at least well enough to understand
function prototypes and return values.

e The reader has read the documents for one of Libmarpa’s upper layers. As of this
writing, the only such layer is Marpa: :R2 or Marpa: :R3, in Perl.

e The reader knows some parsing theory (Section 2.3 [Parsing theory|, page 2).

2.3 Parsing theory

This document assumes some acquaintance with parsing theory. The reader’s level of knowl-
edge is probably adequate if he can answer the following questions, either immediately or
after a little reflection.

e What is a BNF rule?
e What is a Marpa sequence rule?

e As a reminder, Marpa’s sequence rules are implemented as left recursions. What does
that mean?

e Take a Marpa sequence rule at random. What does it look like when rewritten in BNF?

e What does the sequence look like when rewritten in BNF as a right-recursion?

2.4 Terminology and notation

In this document,
e A boolean value, or boolean, is an integer which is 0 or 1.
e iff abbreviates “if and only if”.

e application means an “application” of Libmarpa. In this document, a Libmarpa appli-
cation is not necessarily an application program. For our purposes, an “application”
might be another library which uses Libmarpa.

e max(x,y) is the maximum of x and y, where x and y are two numbers.

e Libmarpa method, or just method means a C function or a function-like macro of the
Libmarpa library.

e user means a “user” of the Libmarpa library. A user of the library is also a programmer,
so that in this documents, “user” and “programmer” are essentially synonyms.

Chapter 2: About this document 3

e We (and “us” and "our”) refer to the authors. As of this writing, there is a primary
author, but the plural is traditional, and our “we” is intended to include the reader
and everyone we are joining on the millenia-old voyage of discovery into mathematics
and language.

2.4.1 Application and diagnostic behavior

An application behavior is a behavior on which it is intended that the design of applications
will be based. Most of the behaviors specified in this document are application behaviors.
We sometimes say that “applications may expect” a certain behavior to emphasize that
that behavior is an application behavior.

After an irrecoverable failure, the behavior of a Libmarpa application is undefined, so
that there are no behaviors which can be relied on for normal application processing, and
therefore, there are no application behaviors. In this circumstance, some of the application
behaviors become diagnostic behaviors. A diagnostic behavior is a behavior which it is
suggested that the programmer may attempt in the face of an irrecoverable failure, for
testing, diagnostics and debugging. They are hoped for, rather than expected, and intended
to allow the programmer to deal with irrecoverable failures as smoothly as possible. (See
Chapter 9 [Failure], page 14.)

In this document, a behavior is a diagnostic behavior only if that is specifically indicated.
Applications should not be designed to rely on diagnostics behaviors. We sometimes say
that “diagnostics may attempt” a certain behavior to emphasize that that behavior is a
diagnostic behavior.

3 About Libmarpa

Libmarpa implements the Marpa parsing algorithm. Marpa is named after the legendary
11th century Tibetan translator, Marpa Lotsawa. In creating Marpa, I depended heavily
on previous work by Jay Earley, Joop Leo, John Aycock and Nigel Horspool.

Libmarpa implements the entire Marpa algorithm. This library does the necessary gram-
mar preprocessing, recognizes the input, and produces parse trees. It also supports the
ordering, iteration and evaluation of the parse trees.

Libmarpa is very low-level. For example, it has no strings. Rules, symbols, and token
values are all represented by integers. This, of course, will not suffice for many applications.
Users will very often want names for the symbols, non-integer values for tokens, or both.
Typically, applications will use arrays to translate Libmarpa’s integer ID’s to strings or
other values as required.

Libmarpa also does not implement most of the semantics. Libmarpa does have an
evaluator (called a “valuator”), but it does not manipulate the stack directly. Instead,
Libmarpa, based on its traversal of the parse tree, passes optimized step by step stack
manipulation instructions to the upper layer. These instructions indicate the token or rule
involved, and the proper location for the true token value or the result of the rule evaluation.
For rule evaluations, the instructions include the stack location of the arguments.

Marpa requires most semantics to be implemented in the application. This allows the
application total flexibility. It also puts the application is in a much better position to
prevent errors, to catch errors at runtime or, failing all else, to successfully debug the logic.

4 Architecture

4.1 Major objects

The classes of Libmarpa’s object system fall into two types: major and numbered. These
are the Libmarpa’s major classes, in sequence.

e Configuration: A configuration object is a thread-safe way to hold configuration vari-
ables, as well as the return code from failed attempts to create grammar objects.

e Grammar: A grammar object contains rules and symbols, with their properties.
e Recognizer: A recognizer object reads input.

e Bocage: A bocage object is a collection of parse trees, as found by a recognizer. Bocages
are similar to parse forests.

e Ordering: An ordering object is an ordering of the trees in a bocage.
e Tree: A tree object is a bocage iterator.

e Value: A value object is a tree iterator. Iteration of tree using a value object produces
“steps”. These “steps” are instructions to the application on how to evaluate the
semantics, and how to manipulate the stack.

The major objects have one letter abbreviations, which are used frequently. These are,
in the standard sequence,

e Configuration: C

e Grammar: G

e Recognizer: R

e Bocage: B

e Ordering: O

o Tree: T

e Value: V

4.2 Time objects

All of Libmarpa’s major classes, except the configuration class, are “time” classes. Except
for objects in the grammar class, all time objects are created from another time object.
Each time object is created from a time object of the class before it in the sequence. A
recognizer cannot be created without a precomputed grammar; a bocage cannot be created
without a recognizer; and so on.

When one time object is used to create a second time object, the first time object is the
parent object and the second time object is the child object. For example, when a bocage
is created from a recognizer, the recognizer is the parent object, and the bocage is the child
object.

Grammars have no parent object. Every other time object has exactly one parent object.
Value objects have no child objects. All other time objects can have any number of children,
from zero up to a number determined by memory or some other machine-determined limit.

Every time object has a base grammar. A grammar object is its own base grammar. The
base grammar of a recognizer is the grammar that it was created with. The base grammar

Chapter 4: Architecture 6

of any other time object is the base grammar of its parent object. For example, the base
grammar of a bocage is the base grammar of the recognizer that it was created with.

4.3 Reference counting

Every object in a “time” class has its own, distinct, lifetime, which is controlled by the
object’s reference count. Reference counting follows the usual practice. Contexts which
take a share of the “ownership” of an object increase the reference count by 1. When a
context relinquishes its share of the ownership of an object, it decreases the reference count
by 1.

Each class of time object has a “ref” and an “unref” method, to be used by those contexts
which need to explicitly increment and decrement the reference count. For example, the
“ref” method for the grammar class is marpa_g_ref () and the “unref” method for the
grammar class is marpa_g_unref ().

Time objects do not have explicit destructors. When the reference count of a time object
reaches 0, that time object is destroyed.

Much of the necessary reference counting is performed automatically. The context calling
the constructor of a time object does not need to explicitly increase the reference count,
because Libmarpa time objects are always created with a reference count of 1.

Child objects “own” their parents, and when a child object is successfully created, the
reference count of its parent object is automatically incremented to reflect this. When a
child object is destroyed, it automatically decrements the reference count of its parent.

In a typical application, a calling context needs only to remember to “unref” each time
object that it creates, once it is finished with that time object. All other reference decre-
ments and increments are taken care of automatically. The typical application never needs
to explicitly call one of the “ref” methods.

More complex applications may find it convenient to have one or more contexts share
ownership of objects created in another context. These more complex situations are the
only cases in which the “ref” methods will be needed.

4.4 Numbered objects

In addition to its major, “time” objects, Libmarpa also has numbered objects. Numbered
objects do not have lifetimes of their own. Every numbered object belongs to a time object,
and is destroyed with it. Rules and symbols are numbered objects. Tokens values are
another class of numbered objects.

5 Input

5.1 Earlemes

5.1.1 The traditional input model

In traditional Earley parsers, the concept of location is very simple. Locations are numbered
from 0 to n, where n is the length of the input. Every location has an Earley set, and vice
versa. Location 0 is the start location. Every location after the start location has exactly
one input token associated with it.

Some applications do not fit this traditional input model — natural language processing
requires ambiguous tokens, for example. Libmarpa allows a wide variety of alternative input
models.

In Libmarpa a location is called a earleme. The number of an Earley set is the ID of
the Earley set, or its ordinal. In the traditional model, the ordinal of an Earley set and its
earleme are always exactly the same, but in Libmarpa’s advanced input models the ordinal
of an Earley set can be different from its location (earleme).

The important earleme values are the latest earleme. the current earleme, and the
furthest earleme. Latest, current and furthest earleme, when they have determinate values,
obey a lexical order in this sense: The latest earleme is always at or before the current
earleme, and the current earleme is always at or before the furthest earleme.

5.1.2 The latest earleme

The latest Earley set is the Earley set completed most recently. This is initially the Earley
set at location 0. The latest Earley set is always the Earley set with the highest ordinal,
and the Earley set with the highest earleme location. The latest earleme is the earleme
of the latest Earley set. If there is an Earley set at the current earleme, it is the lat-
est Earley set and the latest earleme is equal to the current earleme. There is never an
Earley set after the current earleme, and therefore the latest Earley set is never after the
current earleme. The marpa_r_start input() and marpa_r_earleme_complete() meth-
ods are only ones that change the latest earleme. See [marpa_r_start_input], page 34, and
[marpa_r_earleme_complete|, page 36.

The latest earleme is different from the current earleme if and only if there is no Earley
set at the current earleme. A different end of parsing can be specified, but by default,
parsing is of the input in the range from earleme 0 to the latest earleme.

5.1.3 The current earleme

The current earleme is the earleme that Libmarpa is currently working on. More specifically,
it is the one at which new tokens will start. Since tokens are never zero length, a new
token will always end after the current earleme. marpa_r_start_input() initializes the
current earleme to 0, and every call to marpa_r_earleme_complete() advances the current
earleme by 1. The marpa_r_start input() and marpa_r_earleme_complete() methods
are only ones that change the current earleme. See [marpa_r_start_input]|, page 34, and
[marpa_r_earleme_complete], page 36.

Chapter 5: Input 8

5.1.4 The furthest earleme

Loosely speaking, the furthest earleme is the furthest earleme reached by the parse. More
precisely, it is the highest numbered earleme at which a token ends and is 0 if there are
no tokens. The furthest earleme is 0 when a recognizer is created. With every call to
marpa_r_alternative(), the end of the token it adds is calculated. A token ends at the
earleme location current+length, where current is the current earleme, and length is the
length of the newly added token. If old_f is the furthest earleme before a call to marpa_
r_alternative(), the furthest earleme after the call is max(old_f, current+length).
The marpa_r_new() and marpa_r_alternative() methods are only ones that change the
furthest earleme. See [marpa_r_new|, page 34, and [marpa_r_alternative], page 35.

In the basic input models, where every token has length 1, calling marpa_r_earleme_
complete() after each marpa_r_alternative() call is sufficient to process all inputs, and
the furthest earleme’s value can be typically be ignored. In alternative input models, where
tokens have lengths greater than 1, calling marpa_r_earleme_complete() once after the
last token is read may not be enough to ensure that all tokens have been processed. To
ensure that all tokens have been processed, an application must advance the current earleme
by calling marpa_r_earleme_complete (), until the current earleme is equal to the furthest
earleme.

5.2 The basic models of input

For the purposes of presentation, we (somewhat arbitrarily) divide Libmarpa’s input models
into two groups: basic and advanced. In the basic input models of input, every token is
exactly one earleme long. This implies that, in a basic model of input,

e every token is the same length,
e the ordinal of an Earley set will always be the same as its earleme location, and
e the latest earleme and the current earleme are always equal.
In the advanced models of input, tokens may have a length other than 1. Most applica-

tions use the basic input models. The details of the advanced models of input are presented
in a later chapter. See Chapter 23 [Advanced input models], page 77.

5.2.1 The standard model of input

In the standard model of input, there is exactly one successful marpa_r_alternative()
call immediately previous to every marpa_r_earleme_complete() call. A marpa_r_
alternative() call is immediately previous to a marpa_r_earleme_complete() call iff
that marpa_r_earleme_complete() call is the first marpa_r_earleme_complete() call
after the marpa_r_alternative() call.

Recall that, since the standard model is a basic model, the token length in every suc-
cessful call to marpa_r_alternative() will be one. For an input of length n, there will
be exactly n marpa_r_earleme_complete() calls, and all but the last call to marpa_r_
earleme_complete () must be successful.

In the standard model, after a successful call to marpa_r_alternative(), if c is the
value of the current earleme before the call,

e the current earleme will remain unchanged and therefore will be ¢; and

e the furthest earleme be c+1.

Chapter 5: Input 9

In the standard model, a call to marpa_r_earleme_complete() follows a successful call
of marpa_r_alternative(), so that the value of the furthest earleme before the call to
marpa_r_earleme_complete() will be c+1, where c is the value of the current earleme.
After a successful call to marpa_r_earleme_complete(),

e the current earleme will be advanced to c+1; and

e the furthest earleme will be c+1, and therefore equal to the current earleme.

Recall that, in the basic models of input, the latest earleme is always equal to the current
earleme.

5.2.2 Ambiguous input

We can loosen the standard model to allow more than one successful call to marpa_r_
alternative() immediately previous to each call to marpa_r_earleme_complete(). This
change will mean that multiple tokens become possible at each earleme — in other words,
that the input becomes ambiguous. We continue to require that there be at least one suc-
cessful call to marpa_r_alternative() before each call to marpa_r_earleme_complete().
And we recall that, since this is a basic input model, all tokens must have a length of 1.

In the ambiguous input model, the behavior of the current, latest and furthest earlemes
are exactly as described for the standard model. See Section 5.2.1 [The standard model of
input], page 8.

5.3 Terminals

A terminal symbol is a symbol which may appear in the input. Traditionally, all LHS
symbols, as well as the start symbol, must be non-terminals. This is Marpa’s behavior, by
default.

Marpa allows the user to eliminate the distinction between terminals and non-terminals.
In this, it differs from traditional parsers. Libmarpa can arrange for a terminal to appear
on the LHS of one or more rules, or for a terminal to be the start symbol. However, since
terminals can never be zero length, it is a logical contradiction for a nulling symbol to also
be a terminal and Marpa does not allow it.

Token values are int’s. Libmarpa does nothing with token values except accept them
from the application and return them during parse evaluation.

10

6 Exhaustion

A parse is exhausted when it cannot accept any further input. A parse is active iff it is not
exhausted. For a parse to be exhausted, the furthest earleme and the current earleme must
be equal. However, the converse is not always the case: if more tokens can be read at the
current earleme, then it is possible for the furthest earleme and the current earleme to be
equal in an active parse.

Parse exhaustion always has a location. That is, if a parse is exhausted it is exhausted
at some earleme location X. If a parse is exhausted at location X, then

e There may be valid parses at X.

e The parse was active at all locations earlier than X.
e There may be valid parses at locations before X.

e There will be no valid parses at locations after X.

e No tokens can start at location X.

e No tokens can end at a location after X.

e No tokens can start at any location after X.

e No tokens will be accepted by an exhausted parser. It is an irrecoverable hard failure
to call marpa_r_alternative() after a parser has become exhausted.

e No Earley sets will be at any location after X.

e No earlemes are completed by, and no Earley sets are created by, an exhausted parser.
It is an irrecoverable hard failure to call marpa_r_earleme_complete() after a parser
has become exhausted.

Users sometimes assume that parse exhaustion means parse failure. But other users
sometimes assume that parse exhaustion means parse success. For many grammars, there
are strong associations between parse exhaustion and parse success, but the strong associ-
ation can go either way, Both exhaustion-loving and exhaustion-hating grammars are very
common in practical application.

In an exhaustion-hating application, parse exhaustion typically means parse failure. C
programs, Perl scripts and most programming languages are exhaustion-hating applications.
If a C program is well-formed, it is always possible to read more input. The same is true of
a Perl program that does not have a __DATA__ section.

In an exhaustion-loving application parse exhaustion means parse success. A toy exam-
ple of an exhaustion-loving application is the language consisting of balanced parentheses.
When the parentheses come into perfect balance the parse is exhausted, because any further
input would unbalance the brackets. And the parse succeeds when the parentheses come
into perfect balance. Exhaustion means success. Any language which balances start and
end indicators will tend to be exhaustion-loving. HTML and XML, with their start and
end tags, can be seen as exhaustion-loving languages.

One common form of exhaustion-loving parsing occurs in lexers which look for longest
matches. Exhaustion will indicate that the longest match has been found.

It is possible for a language to be exhaustion-loving at some points and exhaustion-hating
at others. We mentioned Perl’s __DATA__ as a complication in a basically exhaustion-hating
language.

Chapter 6: Exhaustion 11

marpa_r_earleme_complete() and marpa_r_start_input are the only methods
that may encounter parse exhaustion. See |[marpa_r_earleme_complete], page 36, and
[marpa_r_start_input], page 34. When the marpa_r_start_input or marpa_r_earleme_
complete() methods exhaust the parse, they generate a MARPA_EVENT_EXHAUSTED
event. Applications can also query parse exhaustion status directly with the
marpa_r_is_exhausted() method. See [marpa_r_is_exhausted], page 39.

12

7 Semantics

Libmarpa handling of semantics is unusual. Most semantics are left up to the applica-
tion, but Libmarpa guides them. Specifically, the application is expected to maintain the
evaluation stack. Libmarpa’s valuator provides instructions on how to handle the stack.
Libmarpa’s stack handling instructions are called “steps”. For example, a Libmarpa step
might tell the application that the value of a token needs to go into a certain stack position.
Or a Libmarpa step might tell the application that a rule is to be evaluated. For rule eva-
lution, Libmarpa will tell the application where the operands are to be found, and where
the result must go.

The detailed discussion of Libmarpa’s handling of semantics is in the reference chapters of
this document, under the appropriate methods and classes. The most extensive discussion
of the semantics is in the section that deals with the methods of the value time class
(Chapter 19 [Value methods|, page 49).

13

8 Threads

Libmarpa is thread-safe, given circumstances as described below. The Libmarpa methods
are not reentrant.

Libmarpa is C89-compliant. It uses no global data, and calls only the routines that are
defined in the C89 standard and that can be made thread-safe. In most modern implemen-
tations, the default C89 implementation is thread-safe to the extent possible. But the C89
standard does not require thread-safety, and even most modern environments allow the user
to turn thread safety off. To be thread-safe, Libmarpa must be compiled and linked in an
environment that provides thread-safety.

While Libmarpa can be used safely across multiple threads, a Libmarpa grammar cannot
be. Further, a Libmarpa time object can only be used safely in the same thread as its base
grammar. This is because all time objects with the same base grammar share data from
that base grammar.

To work around this limitation, the same grammar definition can be used to a create
a new Libmarpa grammar time object in each thread. If there is sufficient interest, future
versions of Libmarpa could allow thread-safe cloning of grammars and other time objects.

14

9 Failure

As a reminder, no language in this chapter (or, for that matter, in this document) should
be read as providing, or suggesting the existence of, a warranty. See [license], page 2. Also,
see Chapter 1 [No warranty|, page 1.

9.1 Libmarpa’s approach to failure

Libmarpa is a C language library, and inherits the traditional C language approach to
avoiding and handling user programming errors. This approach will strike readers unfa-
miliar with this tradition as putting an appallingly large portion of the burden of avoiding
application programmer error on the application programmer themself.

But in the early 1970’s, when the C language first stabilized, the alternative, and the
consensus choice for its target applications was assembly language. In that context, C was
radical in its willingness to incur a price in efficiency in order to protect the programmer
from themself. C was considered to take a excessively "hand holding" approach which very
much flew in the face of consensus.

The decades have made a large difference in the trade-offs, and the consensus about the
degree to which even a low-level language should protect the user has changed. It seems
inevitable that C will be replaced as the low-level language of choice, by a language which
places fewer burdens on the programmer, and more on the machine. The question seems to
be not whether C will be dethroned as the “go to” language for low-level progamming, but
when, and by which alternative.

Modern hardware makes many simple checks essentially cost-free, and Libmarpa’s efforts
to protect the application programmer go well beyond what would have been considered
best practice in the past. But it remains a C language library. But, on the whole, the Lib-
marpa application programmer must be prepared to exercise the high degree of carefulness
traditionally required by its C language environment. Libmarpa places the burden of avoid-
ing irrecoverable failures, and of handling recoverable failures, largely on the application
programmer.

9.2 User non-conformity to specified behavior

This document specifies many behaviors for Libmarpa application programs to follow, such
as the nature of the arguments to each method. The C language environment specifies many
more behaviors, such as proper memory management. When a non-conformity to specified
behavior is unintentional and problematic, it is frequently called a “bug”. Even the most
carefully programmed Libmarpa application may sometimes contain a “bug”. In addition,
some specified behaviors are explicitly stated as characterizing a primary branch of the
processing, rather than made mandatory for all successful processing. Non-conformity to
non-mandatory behaviors can be efficiently recoverable, and is often intentional.

This chapter describes how non-conformity to specified behavior by a Libmarpa applica-
tion is handled by Libmarpa. Non-conformity to specified behavior by a Libmarpa applica-
tion is also called, for the purposes of this document, a Libmarpa application programming
failure. In contexts where no ambiguity arises, Libmarpa application programming failure
will usually be abbreviated to failure.

Chapter 9: Failure 15

Libmarpa application programming success in a context is defined as the absence of
unrecovered failure in that context. When no ambiguity arises, Libmarpa application pro-
gramming success is almost always abbreviated to success. For example, the success of
an application means the application ran without any irrecoverable failures, and that it
recovered from all the recoverable failures that were detected.

9.3 Classifying failure

A Libmarpa application programming failure, unless specified otherwise, is an irrecoverable
failure. Omnce an irrecoverable failure has occurred, the further behavior of the program
is undefined. Nonetheless, we specify, and Libmarpa attempts, diagnostics behaviors (see
Section 2.4.1 [Application and diagnostic behavior|, page 3) in an effort to handle irrecov-
erable failures as smoothly as possible.

A Libmarpa application programming failure is recoverable if and only if it is specified
as such.

A failure is called a hard failure is it has an error code associated with it. A recoverable
failure is called a soft failure if it has no associated error code. (For more on error codes,
see Section 9.11 [Error codes|, page 18.)

All failures fall into one of five types. In order of severity, these are
e memory allocation failures,
e undetected failures,
e irrecoverable hard failures,
e partially recoverable hard failures, and
o fully recoverable hard failures, and

e soft failures.

9.4 Memory allocation failure

Failure to allocate memory is the most irrecoverable of irrecoverable errors. Even effective
error handling assumes the ability to allocate memory, so that the practice has been, in
the event of a memory allocation failure, to take Draconian action. On memory allocation
failure, as with all irrecoverable failures, Libmarpa’s behavior in undefined, but Libmarpa
attempts to terminate the current program abnormally by calling abort ().

Memory allocation failure is the only case in which Libmarpa terminates the program.
In all other cases, Libmarpa leaves the decision to terminate the program, whether normally
or abnormally, up to the application programmer.

Memory allocation failure does not have an error code. As a pedantic matter, memory
allocation failure is neither a hard or a soft failure.

9.5 Undetected failure

An undetected failure is a failure that the Libmarpa library does not detect. Many failures
are impossible or impractical for a C library to detect. Two examples of failure that the
Libmarpa methods do not detect are writes outside the bounds of allocated memory, and
use of memory after it has been freed. C is not strongly typed, and arguments of Libmarpa

Chapter 9: Failure 16

routines undergo only a few simple tests, tests which are inadequate to detect many of the
potential problems.

By undetected failure we emphasize that we mean failures undetected by the Libmarpa
methods. In the examples just given, there exist tools that can help the programmer detect
memory errors and other tools exist to check the sanity of method arguments.

This document points out some of the potentially undetected problems, when doing so
seems more helpful than tedious. But any attempt to list all the undetected problems would
be too large and unwieldy to be useful.

Undetected failure is always irrecoverable. An undetected failure is neither a hard or a
soft failure.

9.6 Irrecoverable hard failure

An irrecoverable hard failure is an irrecoverable Libmarpa application programming failure
that has an error code associated with it. Libmarpa attempts to behave as predictably as
possible in the face of a hard failure, but once an irrecoverable failure occurs, the behavior
of a Libmarpa application is undefined.

In the event of an irrecoverable failure, there are no application behaviors. The diagnostic
behavior for a hard failure is as described for the method which detects the hard failure.
At a minimum, this diagnostic behavior will be returning from the method which detects
the hard failure with the return value specified for hard failure, and setting the error code
as specified for hard failure.

9.7 Partially recoverable hard failure

A partially recoverable hard failure is a recoverable Libmarpa application programming
failure

e that has an error code associated with it; and

e after which some, but not all, of the application behaviors remain available to the
programmer.

For every partially recoverable hard failure, this document specifies the application be-
haviors that remain available after it occurs. The most common kind of partially recoverable
hard failure is a library-recoverable hard failure. For an example of partially recoverable
hard failure, see Section 9.8 [Library-recoverable hard failure], page 16.

9.8 Library-recoverable hard failure

A library-recoverable hard failure is a type of partially recoverable hard failure. Loosely
described, it is a hard failure which allows the programmer to continue to use many of the
Libmarpa methods in the library, but which disallows certain methods on some objects.

To state the restrictions of application behaviors more precisely, let the “failure gram-
mar” be the base grammar of the method which detected the library-recoverable hard
failure. After a library-recoverable hard failure, the following behaviors are no longer ap-
plcation behaviors:

e Libmarpa mutator and constructor method calls where the base grammar is the failure
grammar.

Chapter 9: Failure 17

Recall that any use of a behavior which is not an application behavior is an irrecoverable
failure.

The application behaviors remaining after a library-recoverable hard failure are the fol-
lowing;:

e All Libmarpa accessor method calls, even those whose base grammar is the failure
grammar.

e All Libmarpa destructor method calls, even those whose base grammar is the failure
grammar. An application will often want to destroy all Libmarpa objects whose base
grammar is the failure grammar, in order to clear memory of unusable objects.

e All Libmarpa mutator and constructor method calls, except those whose base grammar
is the failure grammar.

e All Libmarpa static method calls.

e All use of non-Libmarpa interfaces, including other libraries and the C language envi-
ronment.

An example of a library-recoverable hard failure is the MARPA_ERR_COUNTED_NULLABLE
error in the marpa_g_precompute method. See [marpa_g_precompute], page 32.

9.9 Fully recoverable hard failure

A fully recoverable hard failure is a recoverable Libmarpa application programming failure
e that has an error code associated with it; and

e after which all of the application behaviors remain available to the programmer.

One example of a fully recoverable hard failure is the error code MARPA_ERR_UNEXPECTED_
TOKEN_ID. The “Ruby Slippers” parsing technique (see [Ruby Slippers|, page 36), which
has seen extensive usage, is based on Libmarpa’s ability to recover from a MARPA_ERR_
UNEXPECTED_TOKEN_ID error fully and efficiently,

9.10 Soft failure

An soft failure is an recoverable Libmarpa application programming failure that has no
error code associated with it. Hard errors are assigned error codes in order to tell them
apart. Error codes are not necessary or useful for soft errors, because there is at most one
type of soft failure per Libmarpa method.

Soft failures are so called, because they are the least severe kind of failure. The most
severe failures are “bugs” — unintended, and a symptom of a problem. Soft failures, on
the other hand, are a frequent occurrence in normal, successful, processing. In the phrase
“soft failure”, the word “failure” is used in the same sense that its cognate “fail” is used
when we say that a loop terminates when it “fails” its loop condition. That ”failure” is of
a condition necessary to continue on a main branch of processing, and a signal to proceed
on another branch.

It is expected that Libmarpa applications will be designed such that successful execution
is based on the handling specified for soft failures. In fact, a non-trival Libmarpa application
can hardly be designed except on that basis.

Chapter 9: Failure 18

9.11 Error codes

As stated, every hard failure has an associated error code. Full descriptions of the error
codes that are returned by the external methods are given in their own section (Section 21.3
[External error codes|, page 64).

How the error code is accessed depends on the method which detects the hard failure
associated with that error code. Methods for time objects always set the error code in the
base grammar, from which it may be accessed using the error methods described below
(Section 21.1 [Error methods|, page 64). If a method has no base grammar, the way in
which the error code for the hard failures that it detects can be accessed will be stated in
the description of that method.

Since the error of a time object is set in the base grammar, it follows that every object
with the same base grammar has the same error code. Objects with different base grammars
may have different error codes.

While error codes are properties of a base grammar, irrecoverability is application-wide.
That is, whenever any irrecoverable failure occurs, the entire application is irrecoverable.
Once an application becomes irrecoverable, those Libmarpa objects with error codes for
recoverable errors are still subject to the general irrecoverability.

19

10 Introduction to the method descriptions

The following chapters describe Libmarpa’s methods in detail.

10.1 About the overviews

The method descriptions are grouped into chapters and sections. Each such group of meth-
ods descriptions begins, optionally, with an overview. These overviews, again optionally,
end with a “cheat sheet”. The “cheat sheets” name the most important Libmarpa methods
in that chapter or section, in the order in which they are typically used, and very briefly
describe their purpose.

The overviews sometimes speak of an “archetypal” application. The archetypal Lib-
marpa application implements a complete logic flow, starting with the creation of a gram-
mar, and proceeding all the way to the return of the final result from a value object. In
the archetypal Libmarpa application, the grammar, input and semantics are all small but
non-trivial.

10.2 Naming conventions

Methods in Libmarpa follow a strict naming convention. All methods have a name beginning
with marpa_, if they are part of the external interface. If an external method is not a
static method, its name is prefixed with one of marpa_c_, marpa_g_, marpa_r_, marpa_b_,
marpa_o_, marpa_t_ or marpa_v_, where the single letter between underscores is one of the
Libmarpa major class abbreviations. The letter indicates which class the method belongs
to.

Methods that are exported, but that are part of the internal interface, begin with _
marpa_. Methods that are part of the internal interface (often called “internal methods”)
are subject to change and are intended for use only by Libmarpa’s developers.

Libmarpa reserves the marpa_ and _marpa_ prefixes for itself, with all their capitalization
variants. All Libmarpa names visible outside the package will begin with a capitalization
variant of one of these two prefixes.

10.3 Return values

Some general conventions for return values are worth mentioning:
e For methods that return an integer, a return value of —1 usually indicates soft failure.
e For methods that return an integer, a return value of —2 usually indicates hard failure.

e For methods that return an integer, a return value greater of zero or more usually
indicates success.

e If a method returns an pointer value, NULL usually indicates failure. Any other result
usually indicates success.

The Libmarpa programmer should not overly rely on the general conventions for return
values. In particular, —2 may sometimes be ambiguous — both a valid return value for
success, and a potential indication of hard failure. In this case, the programmer must
distinguish the two return statuses based on the error code, and a programmer who is
relying too heavily on the general conventions will fall into a trap. For a the description of
the return values of marpa_g_rule_rank_set (), see Section 13.7 [Rank methods]|, page 30.

Chapter 10: Introduction to the method descriptions 20

10.4 How to read the method descriptions

The method descriptions are written on the assumption that the reader has the following
in mind while reading them:

Fach method description begins with the signature of its “topic method”.
In the method description, the phrase "this method" always refers to the topic method.

Whenever "this method" is the subject of a sentence in the method description, it may
be elided, so that, for example, "This method returns 42" becomes "Returns 42".

If the return type of a method is not void, the last paragraph of its method description
is a “return value summary”. The return value summary starts with the label “Return
Value”.

Every method returns in exactly one of three statuses: success, hard failure, or soft
failure.

A return status of hard failure indicates that the method detected a hard failure.

A method may have several kinds of hard failure, including several kinds of irrecoverable
hard failure and several kinds of recoverable hard failure. On return, these can be
distinguished by their error codes.

If a method call hard fails, its error code is that associated with the hard failure.
Unless stated otherwise in the return value summary, the error code is set in the base
grammar of the method call, and may be accessed with the methods described below.
See Section 21.1 [Error methods], page 64.

If a method allows a recoverable hard failure, this is explicitly stated in its return
value summary, along with the associated error code. The method description with
state the circumstances under which the recoverable hard failure occurs, and what the
application must do to recover.

A return status of soft failure indicates that the method detected a soft failure.
Every method has at most one kind of soft failure.

If a method allows a soft failure, this is explicitly stated in its return value summary,
and the method description will state the circumstances under which the soft failure
occurs, and what the application must do to recover.

If a method call soft fails, the value of the error code is indeterminate.

If a method call succeeds, the value of the error code is indeterminate.

A return status of success indicates that the method did not detect any failures.

If both a hard failure and a soft failure occur, the return status will be hard failure.

If both a recoverable hard failure and an irrecoverable hard failure occur, the error code
will be for an irrecoverable hard failure.

The behaviors specified for success and soft failure are application behaviors.

The behaviors specified for hard failures are diagnostic behaviors if an irrecoverable
failure occurred, and application behaviors otherwise.

21

11 Static methods

Marpa_Error_Code marpa_check_version (int required_major, [Function]
int required_minor, int required_micro)
[Accessor] Checks that the Marpa library in use is compatible with the given ver-
sion. Generally, the application programmer will pass in the constants MARPA_MAJOR_
VERSION, MARPA_MINOR_VERSION, and MARPA_MICRO_VERSION as the three arguments,
to check that their application was compiled with headers the match the version of
Libmarpa that they are using.

If required_major.required_minor.required_micro is an exact match with 9.0.3, the
method succeeds. Otherwise the return status is an irrecoverable hard failure.

Return value: On success, MARPA_ERR_NONE. On hard failure, the error code.

Marpa_Error_Code marpa_version (int™ version) [Function]
[Accessor] Writes the version number in version. It is an undetected irrecoverable
hard failure if version does not have room for three int’s.

Return value: Always succeeds. The return value is indeterminate.

22

12 Configuration methods

The configuration object is intended for future extensions. These may allow the application
to override Libmarpa’s memory allocation and fatal error handling without resorting to
global variables, and therefore in a thread-safe way. Currently, the only function of the
Marpa_Config class is to give marpa_g_new() a place to put its error code.

Marpa_Config is Libmarpa’s only “major” class which is not a time class. There is no
constructor or destructor, although Marpa_Config objects do need to be initialized before
use. Aside from its own accessor, Marpa_Config objects are only used by marpa_g_new()
and no reference to their location is not kept in any of Libmarpa’s time objects. The intent
is to that it be convenient to have them in memory that might be deallocated soon after
marpa_g_new() returns. For example, they could be put on the stack.

int marpa_c_init (Marpa_Config* config) [Function]
[Mutator] Initialize the config information to “safe” default values. An irrecoverable
error will result if an uninitialized configuration is used to create a grammar.

Return value: Always succeeds. The return value is indeterminate.

Marpa_Error_Code marpa_c_error (Marpa_Config* config, const [Function]
char** p_error_string)
[Accessor] Error codes are usually kept in the base grammar, which leaves marpa_g_
new() no place to put its error code on failure. Objects of the Marpa_Config class
provide such a place. p_error_string is reserved for use by the internals. Applications
should set it to NULL.

Return value: The error code in config. Always succeeds, so that marpa_c_error ()
never requires an error code for itself.

23

13 Grammar methods

13.1 Overview

An archetypal application has a grammar. To create a grammar, use the marpa_g_new()
method. When a grammar is no longer in use, its memory can be freed using the marpa_
g_unref () method.

To be precomputed, a grammar must have one or more symbols. To create symbols, use
the marpa_g_symbol_new() method.

To be precomputed, a grammar must have one or more rules. To create rules, use the
marpa_g_rule_new() and marpa_g_sequence_new() methods.

For non-trivial parsing, one or more of the symbols must be terminals. To mark a symbol
as a terminal, use the marpa_g_symbol_is_terminal_set () method.

To be precomputed, a grammar must have exactly one start symbol. To mark a symbol
as the start symbol, use the marpa_g_start_symbol_set () method.

Before parsing with a grammar, it must be precomputed. To precompute a grammar,
use the marpa_g_precompute () method.

13.2 Creating a new grammar

Marpa_Grammar marpa_g_new (Marpa_Config* configuration) [Function]
[Constructor] Creates a new grammar time object. The returned grammar object is
not yet precomputed, and will have no symbols and rules. Its reference count will be
1.

Unless the application calls marpa_c_error() Libmarpa will not reference the loca-
tion pointed to by the configuration argument after marpa_g_new() returns. (See
[marpa_c_error], page 22.) The configuration argument may be NULL, but if it is,
there will be no way to determine the error code on failure.

Return value: On success, the grammar object. On hard failure, NULL. Also on hard
failure, if the configuration argument is not NULL, the error code is set in configuration.
The error code may be accessed using marpa_c_error().

int marpa_g_force_valued (Marpa-Grammar g) [Function]
[Mutator] It is recommended that this call be made immediately after the grammar
constructor. It turns off a deprecated feature.

The marpa_g_force_valued() forces all the symbols in a grammar to be “valued”.
The opposite of a valued symbol is one about whose value you do not care. This
distinction has been made in the past in hope of gaining efficiencies at evaluation
time. Current thinking is that the gains do not repay the extra complexity.

Return value: On success, a non-negative integer, whose value is otherwise indeter-
minate. On failure, -2.

Chapter 13: Grammar methods 24

13.3 Tracking the reference count of the grammar

Marpa_Grammar marpa_g_ref (Marpa-Grammar g) [Function]
[Mutator] Increases the reference count of g by 1. Not needed by most applications.

Return value: On success, g. On hard failure, NULL.

void marpa_g_unref (Marpa.Grammar g) [Function]
[Destructor| Decreases the reference count by 1, destroying g once the reference count
reaches zero.

13.4 Symbol methods

Marpa_Symbol_ID marpa_g_start_symbol (Marpa-Grammar g) [Function]
[Accessor] When successful, returns the ID of the start symbol. Soft fails, if there is
no start symbol. The start symbol is set by the marpa_g_start_symbol_set() call.

Return value: On success, the ID of the start symbol, which is always a non-negative
number. On soft failure, —1. On hard failure, —2.

Marpa_Symbol_ID marpa_g_start_symbol_set (Marpa-Grammar [Function]
g, Marpa_Symbol_ID sym_id)
[Mutator] When successful, sets the start symbol of grammar g to symbol sym_id.
Soft fails if sym_id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, sym_id, which will always be a non-negative number. On
soft failure, —1. On hard failure, —2.

int marpa_g_highest_symbol_id (Marpa-Grammar g) [Function]
[Accessor] Return value: On success, the numerically largest symbol ID of g. On hard
failure, —2.

int marpa_g_symbol_is_accessible (Marpa-Grammar g, [Function]

Marpa_Symbol_ID sym_id)
[Accessor] A symbol is accessible if it can be reached from the start symbol. Soft fails
if sym_id is well-formed (a non-negative integer), but a symbol with that ID does
not exist. A common hard failure is calling this method with a grammar that is not
precomputed.

Return value: On success, 1 if symbol sym_id is accessible, 0 if not. On soft failure,
—1. On hard failure, —2.

int marpa_g_symbol_is_nullable (Marpa_Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] A symbol is nullable if it sometimes produces the empty string. A nulling
symbol is always a nullable symbol, but not all nullable symbols are nulling symbols.
Soft fails if sym_id is well-formed (a non-negative integer), but a symbol with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success, 1 if symbol sym_id is nullable, 0 if not. On soft failure,
—1. On hard failure, —2.

Chapter 13: Grammar methods 25

int marpa_g_symbol_is_nulling (Marpa_-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] A symbol is nulling if it always produces the empty string. Soft fails if
sym_id is well-formed (a non-negative integer), but a symbol with that ID does not
exist. A common hard failure is calling this method with a grammar that is not
precomputed.

Return value: On success, 1 if symbol sym_id is nulling, 0 if not. On soft failure, —1.
On hard failure, —2.

int marpa_g_symbol_is_productive (Marpa_-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] A symbol is productive if it can produce a string of terminals. All nullable
symbols are considered productive. Soft fails if sym_id is well-formed (a non-negative
integer), but a symbol with that ID does not exist. A common hard failure is calling
this method with a grammar that is not precomputed.

Return value: On success, 1 if symbol sym_id is productive, 0 if not. On soft failure,
—1. On hard failure, —2.

int marpa_g_symbol_is_start (Marpa.Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] On success, if sym_id is the start symbol, returns 1. On success, if sym_id
is not the start symbol, returns 0. On success, if no start symbol has been set, returns
0. is the start symbol.

Soft fails if sym_id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, 1 or 0. On soft failure, —1. On hard failure, —2.

int marpa_g_symbol_is_terminal (Marpa-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] On succcess, returns the “terminal status” of a sym_id. The terminal
status is 1 if sym_id is a terminal, O otherwise. To be used as an input symbol in the
marpa_r_alternative() method, a symbol must be a terminal.

By default, a symbol is a terminal if and only if it does not appear on the LHS of
any rule. The terminal status can be set explicitly with the marpa_g_symbol_is_
terminal_set () method. See [marpa_g_symbol_is_terminal_set], page 25.

Soft fails if sym_id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, 1 or 0. On soft failure, —1. On hard failure, —2.

int marpa_g_symbol_is_terminal_set (Marpa.Grammar g, [Function]
Marpa_Symbol_ID sym_id, int value)
[Mutator] Sets the “terminal status” of a symbol. This function flags symbol sym_id
as a terminal if value is 1, or flags it as a non-terminal if value is 0. To be used as an
input symbol in the marpa_r_alternative() method, a symbol must be a terminal.
On success, this method returns value.

Once set to a value with this method, the terminal status of a symbol is “locked” at
that value. A subsequent call to this method that attempts to change the terminal

Chapter 13: Grammar methods 26

status of sym_id to a value different from its current one will hard fail with error code
MARPA_ERR_TERMINAL_IS_LOCKED. Other hard failures include when value is not 0 or
1; and when the grammar g is precomputed.

By default, a symbol is a terminal if and only if it does not appear on the LHS of any
rule. An attempt to flag a nulling symbol as a terminal will cause a failure, but this
is not necessarily detected before precomputation.

Return value: On success, value, which will be 1 or 0. On soft failure, —1. On hard
failure, —2.

Marpa_Symbol_ID marpa_g_symbol_new (Marpa-Grammar g) [Function]
[Mutator] When successful, creates a new symbol in grammar g.

Return value: On success, the ID of the new symbol; which will be a non-negative
integer. On hard failure, —2.

13.5 Rule methods

int marpa_g_highest_rule_id (Marpa-Grammar g) [Function]
[Accessor] Return value: On success, the numerically largest rule ID of g. On hard
failure, —2.

int marpa_g_rule_is_accessible (Marpa_Grammar g, [Function]

Marpa_Rule_ID rule_id)
[Accessor] A rule is accessible if it can be reached from the start symbol. A rule is
accessible if and only if its LHS symbol is accessible. The start rule is always an
accessible rule.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if rule with ID rule_id is accessible, 0 if not. On
soft failure, —1. On hard failure, —2.

int marpa_g_rule_is_nullable (Marpa-Grammar g, [Function]
Marpa_Rule_ID ruleid)
[Accessor] A rule is nullable if it sometimes produces the empty string. A nulling rule
is always a nullable rule, but not all nullable rules are nulling rules.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule_id is nullable, 0 if not.
On soft failure, —1. On hard failure, —2.

int marpa_g_rule_is_nulling (Marpa-Grammar g, [Function]
Marpa_Rule_ID ruleid)
[Accessor| A rule is nulling if it always produces the empty string.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID

does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Chapter 13: Grammar methods 27

Return value: On success 1 or 0: 1 if the rule with ID rule_id is nulling, 0 if not. On
soft failure, —1. On hard failure, —2.

int marpa_g_rule_is_loop (Marpa_Grammar g, Marpa_Rule_ID [Function]
rule_id)
[Accessor] A rule is a loop rule if it non-trivially produces the string of length one
which consists only of its LHS symbol. Such a derivation takes the parse back to where
it started, hence the term “loop”. “Non-trivially” means the zero-step derivation does
not count — the derivation must have at least one step.

The presence of a loop rule makes a grammar infinitely ambiguous, and applications
will typically want to treat them as fatal errors. But nothing forces an application to
do this, and Marpa will successfully parse and evaluate grammars with loop rules.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule_id is a loop rule, 0 if not.
On soft failure, —1. On hard failure, —2.

int marpa_g_rule_is_productive (Marpa_Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] A rule is productive if it can produce a string of terminals. A rule is
productive if and only if all the symbols on its RHS are productive. The empty string
counts as a string of terminals, so that a nullable rule is always a productive rule. For
that same reason, an empty rule is considered productive.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist. A common hard failure is calling this method with a grammar that is
not precomputed.

Return value: On success 1 or 0: 1 if the rule with ID rule_id is productive, 0 if not.
On soft failure, —1. On hard failure, —2.

int marpa_g_rule_length (Marpa-Grammar g, Marpa_Rule_ID [Function]
rule_id)
[Accessor] The length of a rule is the number of symbols on its RHS.

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, the length of the rule with ID rule_id. On soft failure, —1.
On hard failure, —2.

Marpa_Symbol_ID marpa_g_rule_lhs (Marpa.Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] Soft fails if rule_id is well-formed (a non-negative integer), but a rule with
that ID does not exist.

Return value: On success, the ID of the LHS symbol of the rule with ID rule_id. On
soft failure, —1. On hard failure, —2.

Chapter 13: Grammar methods 28

Marpa_Rule_ID marpa_g_rule_new (Marpa_Grammar g, [Function]
Marpa_Symbol_ID 1hs_id, Marpa_Symbol_ID *rhs_ids, int length)
[Mutator] On success, creates a new external BNF rule in grammar g. The ID of
the new rule will be a non-negative integer, which will be unique to that rule. In
addition to BNF rules, Marpa also allows sequence rules, which are created by the
marpa_g_sequence_new() method. See [marpa_g_sequence_new]|, page 29.
Sequence rules and BNF rules are both rules: They share the same series of rule IDs,

and are accessed and manipulated by the same methods, with the only differences
being as noted in the descriptions of those methods.

The LHS symbol is lhs_id, and there are length symbols on the RHS. The RHS
symbols are in an array pointed to by rhs_ids.
Possible hard failures, with their error codes, include:
e MARPA_ERR_SEQUENCE_LHS_NOT_UNIQUE: The LHS symbol is the same as that of
a sequence rule.

e MARPA_ERR_DUPLICATE_RULE: The new rule would duplicate another BNF rule.
Another BNF rule is considered the duplicate of the new one, if its LHS symbol
is the same as symbol lhs_id, if its length is the same as length, and if its RHS
symbols match one for one those in the array of symbols rhs_ids.

Return value: On success, the ID of the new external rule. On hard failure, —2.

Marpa_Symbol_ID marpa_g_rule_rhs (Marpa.Grammar g, [Function]
Marpa_Rule_ID rule_id, int ix)

[Accessor] When successful, returns the ID of the symbol at index ix in the RHS of
the rule with ID rule_id. The indexing of RHS symbols is zero-based.
Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.
A common hard failure is for ix not to be a valid index of the RHS. This happens if
ix is less than zero, or or if ix is greater than or equal to the length of the rule.

Return value: On success, a symbol ID, which is always non-negative. On soft failure,
—1. On hard failure, —2.

13.6 Sequence methods

int marpa_g_rule_is_proper_separation (Marpa_Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] When successful, returns
e 1 if rule_id is the ID of a sequence rule whose proper separation flag is set,
e 0 if rule_id is the ID of a sequence rule whose proper separation flag is not set,

e 0 if rule_id is the ID of a rule that is not a sequence rule.

Does not distinguish sequence rules without proper separation from non-sequence
rules. That is, does not distinguish an unset proper separation flag from a proper
separation flag which value is undefined because rule_id is the ID of a BNF rule.
Applications which want to determine whether or not a rule is a sequence rule can
use marpa_g_sequence_min() to do this. See [marpa_g_sequence_min], page 29.

Chapter 13: Grammar methods 29

Soft fails if rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, 1 or 0. On soft failure, —1. On hard failure, —2.

int marpa_g_sequence_min (Marpa_-Grammar g, Marpa_Rule_1D [Function]
rule_id)
[Accessor] On success, returns the mininum length of a sequence rule. Soft fails if a
rule with ID rule_id exists, but is not a sequence rule. This soft failure can used to
test whether or not a rule is a sequence rule.

Hard fails irrecoverably if rule_id is not well-formed (a non-negative number). Also,
hard fails irrecoverably if no rule with ID rule_id exists, even when rule_id is well
formed. Note that, in its handling of the non-existence of a rule for its rule argument,
this method differs from many of the other grammar methods. Grammar methods
which take a rule ID argument more often treat the non-existence of rule for a well-
formed rule ID as a soft, recoverable, failure.

Return value: On success, the minimum length of the sequence rule with ID rule_id,
which is always non-negative. On soft failure, —1. On hard failure, —2.

Marpa_Rule_ID marpa_g_sequence_new (Marpa-Grammar g, [Function]
Marpa_Symbol_ID 1hs_id, Marpa_Symbol_ID rhs_id,
Marpa_Symbol_ID separator_id, int min, int flags)

[Mutator] When successful, adds a new sequence rule to grammar g, and return its
ID. The ID of the sequence rule will be a non-negative integer, which is unique to
that rule. All rules are numbered in the same series, so that a BNF rule will never
have the same rule ID as a sequence rule, and vice versa.

Sequence rules are “sugar” — their presence in the Libmarpa interface does not extend
its power. Every Libmarpa grammar which can be written using sequence rules can
be rewritten as a grammar without sequence rules.

The LHS of the sequence is lhs_id, and the item to be repeated on the RHS of the
sequence is rhs_id. The sequence must be repeated at least min times, where min is
0 or 1. If separator_id is non-negative, it is a separator symbol.

The LHS symbol cannot be the LHS of any other rule, whether a BNF rule or a
sequence rule. On an attempt to create an sequence rule with a duplicate LHS, this
method hard fails, with an error code of MARPA_ERR_SEQUENCE_LHS_NOT_UNIQUE.

The sequence RHS, or item, is restricted to a single symbol, and that symbol cannot
be nullable. If separator_id is a symbol, it also cannot be a nullable symbol. Nullables
on the RHS of sequence rules are prohibited because it is not completely clear what an
application intends when it asks for a sequence of items, some of which are nullable —
the most natural interpretation of this usually results in a highly ambiguous grammar.

Libmarpa allows highly ambiquous grammars and a programmer who wants a gram-
mar with sequences containing nullable items or separators can can write that gram-
mar using BNF rules. The use of BNF rules make it clearer that ambiguity is what
the programmer intended, and allows the programmer more flexibility.

If flags & MARPA_PROPER_SEPARATION is non-zero, separation is “proper”, that is, a
trailing separator is not allowed. The term proper is based on the idea that properly-
speaking, separators should actually separate items. Proper separation has no effect

Chapter 13: Grammar methods 30

at the Libmarpa level — it is tracked as a convenience for the higher-level interfaces to
Libmarpa, which may want to offer the ability to discard separators in the semantics.
(Some higher-level interfaces, in fact, may choose to discard separation by default.)
At the Libmarpa level, sequences always “keep separators”.

Return value: On success, the ID of the newly added sequence rule, which is always
non-negative. On hard failure, —2.

int marpa_g_sequence_separator (Marpa-Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] On success, returns the symbol ID of the separator of the sequence rule
with ID rule_id. Soft fails if there is no separator. The causes of hard failure include
rule_id not being well-formed; rule_id not being the ID of a rule which exists; and
rule_id not being the ID a sequence rule.

Return value: On success, a symbol ID, which is always non-negative. On soft failure,
—1. On hard failure, —2.

int marpa_g_symbol_is_counted (Marpa_-Grammar g, [Function]
Marpa_Symbol_ID sym_id)
[Accessor] On success, returns a boolean whose value is 1 iff the symbol with ID
sym_id is counted. A symbol is counted iff

e it appears on the RHS of a sequence rule, or

e it is used as the separator symbol of a sequence rule.

Soft fails iff sym_id is well-formed (a non-negative integer), but a symbol with that
ID does not exist.

Return value: On success, a boolean. On soft failure, —1. On hard failure, —2.

13.7 Rank methods

Marpa_Rank marpa_g_rule_rank (Marpa_Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] When successful, returns the rank of the rule with ID rule_id. When a rule
is created, its rank is initialized to the default rank of the grammar. The default rank
of the grammar is 0.

Return value: On success, returns a rule rank, and sets the error code to MARPA_ERR _
NONE. The rule rank is an integer. On hard failure, returns —2, and sets the error code
to an appropriate value, which will never be MARPA_ERR_NONE. Note that —2 is a valid
rule rank, so that when —2 is returned, the error code is the only way to distinguish
success from failure. The error code can be determined using marpa_g_error(). See
[marpa_g_error], page 64.

Marpa_Rank marpa_g_rule_rank_set (Marpa.Grammar g, [Function]
Marpa_Rule_ID rule_id, Marpa-Rank rank)
[Mutator] When successful, sets the rank of the rule with ID rule_id to rank and
returns rank.
Return value: On success, returns rank, which will be an integer, and sets the error
code to MARPA_ERR_NONE. On hard failure, returns —2, and sets the error code to

Chapter 13: Grammar methods 31

an appropriate value, which will never be MARPA_ERR_NONE. Note that —2 is a valid
rule rank, so that when —2 is returned, the error code is the only way to distinguish
success from failure. The error code can be determined using marpa_g_error(). See
[marpa_g_error|, page 64.

int marpa_g_rule_null_high (Marpa-Grammar g, [Function]
Marpa_Rule_ID rule_id)
[Accessor] On success, returns a boolean whose value is 1 iff “null ranks high” is set
in the rule with ID rule_id. When a rule is created, it has “null ranks high” set.

For more on the “null ranks high” setting, read the description of marpa_g_rule_
null_high_set (). See [marpa_g_rule_null_high_set], page 31.

Soft fails iff rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.

Return value: On success, a boolean. On soft failure, —1. On hard failure, —2.

int marpa_g_rule_null_high_set (Marpa.Grammar g, [Function]
Marpa_Rule_ID rule_id, int flag)
[Mutator] On success,

e sets “null ranks high” in the rule with ID rule_id if the value of the boolean flag
is 1;

e unsets “null ranks high” in the rule with ID rule_id if the value of the boolean
flag is 0; and

e returns flag.

The “null ranks high” setting affects the ranking of rules with properly nullable sym-
bols on their right hand side. If a rule has properly nullable symbols on its RHS, each
instance in which it appears in a parse will have a pattern of nulled and non-nulled
symbols. Such a pattern is called a “null variant”.

If the “null ranks high” is set, nulled symbols rank high. If the “null ranks high”
is unset is the default), nulled symbols rank low. Ranking of a null variants is done
from left-to-right.

Soft fails iff rule_id is well-formed (a non-negative integer), but a rule with that ID
does not exist.
Hard fails if the grammar has been precomputed.

Return value: On success, a boolean. On soft failure, —1. On hard failure, —2.

13.8 Precomputing the Grammar

int marpa_g_has_cycle (Marpa-Grammar g) [Function]
[Accessor] On success, returns a boolean which is 1 iff g has a cycle. Cycles make a
grammar infinitely ambiguous, and are considered useless in current practice. Cycles
make processing the grammar less efficient, sometimes considerably so. Applications
will almost always want to treat cycles as mistakes on the part of the writer of the
grammar. To determine which rules are in the cycle, marpa_g_rule_is_loop() can
be used.

Return value: On success, a boolean. On hard failure, —2.

Chapter 13: Grammar methods 32

int marpa_g_is_precomputed (Marpa_Grammar g) [Function]
[Accessor] Return value: On success, a boolean which is 1 iff grammar g is precom-
puted. On hard failure, —2.

int marpa_g_precompute (Marpa_Grammar g) [Function]
[Mutator] On success, and on fully recoverable hard failure, precomputes the grammar
g. Precomputation involves running a series of grammar checks and “precomputing”
some useful information which is kept internally to save repeated calculations. Af-
ter precomputation, the grammar is “frozen” in many respects, and many grammar
mutators which succeed before precomputation will cause hard failures after pre-
computation. Precomputation is necessary for a recognizer to be generated from a
grammar.

When called, clears any events already in the event queue. May return one or more
events. The types of event that this method may return are A MARPA_EVENT_LOOP_
RULES, MARPA_EVENT_COUNTED_NULLABLE, MARPA_EVENT_NULLING_TERMINAL. All of
these events occur only on failure. Applications must be prepared for this method
to return additional events, including events which occur on success. Events may be
queried using the marpa_g_event () method. See [marpa_g_event|, page 56.

The fully recoverable hard failure is MARPA_ERR_GRAMMAR_HAS_CYCLE. Recall that
for fully recoverable hard failures this method precomputes the grammar. Most
appplications, however, will want to treat a grammar with cycles as if it were a
library-recoverable error. A MARPA_ERR_GRAMMAR_HAS_CYCLE error occurs iff a MARPA_
EVENT_LOOP_RULES event occurs. For more details on cycles, see [marpa_g_has_cycle],
page 31.

The error code MARPA_ERR_COUNTED_NULLABLE is library-recoverable. This failure
occurs when a symbol on the RHS of a sequence rule is nullable, which Libmarpa
does not allow in a grammar. Error code MARPA_ERR_COUNTED_NULLABLE occurs iff
one or more MARPA_EVENT_COUNTED_NULLABLE events occur. There is one MARPA_
EVENT_COUNTED_NULLABLE event for every symbol which is a nullable on the right
hand side of a sequence rule. An application may use these events to inform the user
of the problematic symbols, and this detail may help the user fix the grammar.

The error code item MARPA_ERR_NULLING_TERMINAL is library-recoverable. This fail-
ure occurs when a nulling symbol is also flagged as a terminal. Since terminals
cannot be of zero length, this is a logical impossibility, and Libmarpa does not al-
low nulling terminals in a grammar. Error code item MARPA_ERR_NULLING_TERMINAL
occurs iff one or more MARPA_EVENT_NULLING_TERMINAL events occur. There is one
MARPA_EVENT_NULLING_TERMINAL events for every nulling terminal in the grammar.
An application may use these events to inform the user of the problematic symbols,
and this detail may help the user fix the grammar.

Among the other error codes which may case this method to fail are the following;:
e MARPA_ERR_NO_RULES: The grammar has no rules.
e MARPA_ERR_NO_START_SYMBOL: No start symbol was specified.

e MARPA_ERR_INVALID_START_SYMBOL: A start symbol ID was specified, but it is
not the ID of a valid symbol.

e MARPA_ERR_START_NOT_LHS: The start symbol is not on the LHS of any rule.

Chapter 13: Grammar methods 33

e MARPA_ERR_UNPRODUCTIVE_START: The start symbol is not productive.

More details of these can be found under the description of the appropriate code. See
Section 21.3 [External error codes|, page 64.

Return value: On success, a non-negative number, whose value is otherwise indeter-
minate. On hard failure, —2. For the error code MARPA_ERR_GRAMMAR_HAS_CYCLE, the
hard failure is fully recoverable. For the error codes MARPA_ERR_COUNTED_NUL